

- Level-0, 1, and 2
- Radiative Transfer Models
- Exercise
- Questions on discussion board
 - Irradiance, radiance, reflectance, reflectivity and their units
 - Relationship between brightness and whiteness of clouds
- Q&A

UNIVERSITY OF TWENTE.

LEVEL-0, 1, AND 2

- Level-0: uncalibrated, "raw" data [photon counts, detector units]
- Level-1 : geo-referenced, calibrated radiances [Wm⁻²sr⁻¹] or TOA reflectances [-]
- Level-2 : atmospherically corrected BOA reflectances [-] or other products
- More information: https://www.earthdata.nasa.gov/engage/open-data-services-andsoftware/data-information-policy/data-levels

RADIATIVE TRANSFER MODELS

- Calculate TOA reflectances (or radiances)
- Need input on:
 - Atmosphere (temperature & density profile, aerosols, gases (O₃, H₂O, CO₂, ...)
 - Surface (reflectivity, topology)
 - Angles of Sun and instrument w.r.t. surface normal
 - Solar irradiance
- Wavelength

 ACTUAL
 ACTU

UNIVERSITY OF TWENTE.

EXERCISE

Trouble with linear algebra? Look at: https://www.khanacademy.org/math/algebra-basics/alg-basics-graphing-lines-and-slope/alg-basics-solutions-to-two-var-equations/v/2-variable-linear-equations-graphs

UNIVERSITY OF TWENTE.

WHY DO CLOUDS LOOK THE WAY THEY DO?

- Clouds are bright because liquid water does not absorb visible radiation
- Clouds are white because cloud droplets are larger than the wavelengths of visible radiation and therefore scatter all colours with the same probability

UNIVERSITY OF TWENTE.

IRRADIANCE, RADIANCE, REFLECTIVITY

TOA

BOA

- Irradiance I₀
 - flux per unit area (in Wm⁻²)
- Radiance I:
- flux per unit area and solid angle (in Wm⁻²sr⁻¹)
- TOA Reflectance R_{TOA}:
 - Equal to radiance/irradiance: $R_{TOA} = \frac{\pi I}{I_0 \cos \theta_0}$
 - Property of surface, atmosphere, geometry
 - NOT equivalent to reflectivity!
- BOA Reflectance *R_{BOA}*:
 - R_{TOA} minus Atmospheric influence
 - Property of surface equivalent to reflectivity (for all practical purposes)