

CONTENTS OF THE LECTURE

- Visualisation
- Colour perception
- Image display/band selection
- Elementary image enhancement
 - Contrast enhancement (histogram operations)

OBJECTIVES

- Explain and apply options to enhance an image by histogram operations for efficient and effective visualisation.
- Explain and apply colour composites in relation to spectral properties and spectral bands (use and usage).
- Textbook Chapter 5, Paragraph 5.1 Visualization and radiometric operations up to "Noise reduction".
- Lectures
- Exercises

Human eye only sensitive for visible EM Radiation

TRI-STIMULI MODEL FOR COLOUR VISION

- Three kinds of cones
- Three layers on colour film
- Red-Green-Blue dots on monitors
- Magenta-Yellow-Cyan (inks) for printing
- Colour cube/spaces
- Sensation to the human has stronger relation to Intensity-Hue-Saturation (Brightness-Colour-Vividness) than to Red-Green-Blue

SENSITIVITY OF CONES AND RODS

- Cones need high intensities to work well
 - Three types of cones exist with different sensitivity (approx. Red-L, Green-M and Blue-S)
- Rods work well in low illumination, but show only brightness

UNIVERSITY OF TWENTE.

Γ

Yellow

IHS (HLS)

Green

Black

COLOUR SYSTEMS (DIS)AGREEMENT

https://upload.wikimedia.org/wikipedia/commons/thum b/b/b4/Ostwald_Color.jpg/800px-Ostwald_Color.jpg

https://upload.wikimedia.org/wikipedia/com mons/thumb/d/d5/Munsell-

the distance of colour show intensity, how bright how dark

DIN 6164

https://www.colorsystem.com/wpcontent/uploads/47din/din6164.jpg

ADDITIVE AND SUBTRACTIVE COLORS

Subtractive Color Scheme

Screen display

Printing

INTERACTIVE RGB

https://www.physicsclassroom.com/Physics-Interactives/Light-and-Color/RGB-Color-Addition/RGB-Color-Addition-Interactive Question for those interested:

What is wrong with the colour wheel in this interactive tool?

UNIVERSITY OF TWENTE.

Get your smartphone/laptop and browse to

www.wooclap.com/VISCORE

TERMINOLOGY

- Raster data sets contain one or more layers
- EO images (

 raster data sets) contain one or more layers containing measurements in different portions from the EM spectrum. Also referred to as (spectral) bands.
- Monitors build up display using one up to three channels from Red, Green and Blue
- A measurement is stored as a Digital Number (DN) also referred to as value (and tautology DN value;-)

UNIVERSITY OF TWENTE.

UNIVERSITY OF TWENTE.

IMAGE DISPLAY; GREY SCALE

IMAGE DISPLAY One band → Grey scale One band → Pseudo colour table (e.g. classification results) Multiple bands → Select 3 → Colour composites (e.g. false colour comp.)

UNIVERSITY OF TWENTE.

Special types: Anaglyph, Stereo/3D

IMAGE DISPLAY; PSEUDO COLOUR (HUE)

IMAGE DISPLAY; PSEUDO COLOUR

Human eye more sensitive to variations in Hue than in Intensity

COLOUR COMPOSITES CLASSIFICATION

Standard False Colour composite

healthy vegetation = reddish

All other combinations Selecting prominent bands to interpret specific object classes

UNIVERSITY OF TWENTE.

Band x

COLOUR COMPOSITES

Red+Green Band 5 Band 3 Green+Blue

mix RGB = All colour in rainbow, include white Band 4 + band 5 = Green, orange, yellow, red

Band 4

COLOUR COMPOSITES

■ TM (6 bands)=
$$\left(\frac{6!}{(6-3)!}\right) = \left(\frac{720}{6}\right) = 120$$

Because for RGB the order does matter

BAND SELECTION IS ESSENTIAL

- Analyse spectral char. of objects of interest with respect to (char. of) bands available
- Don't select correlated bands
- Consider User/Usage (experience of user, natural versus false colour, application)

UNIVERSITY OF TWENTE.

VISUALISATION OF MAIN COVER TYPES

- Same applies to colour composites
- E.g. Band 4 in Red and band 5 in Green

Water ~ Black UNIVERSITY OF TWENTE.

Soil ~ Light Greenish

Orange

ETM - 9 Aug 09

VISUALISATION OF MAIN COVER TYPES

- Find signatures
- Find sensor characteristics
- Translate signature into relative brightness for display

Water ~ UNIVERSITY OF TWENTE. Dark(est)

Vegetation -Light(est)

UNIVERSITY OF TWENTE. **ELEMENTARY IMAGE ENHANCEMENT** FOR DISPLAY ACULTY OF GEO-INFORMATION SCIENCE AND EARTH OBSERVATION

SETTING THE SCENE

- Image is subset of the World
 - Energy range measured in an image is a subset of the dynamic range of sensor -> subset of 8 bit, 10 bit . . .

- Monitor can display 2⁸ = 256 shades of grey
- How to make efficient use of both?

ELEMENTARY IMAGE ENHANCEMENT

- Enhance the image for a specific purpose through histogram operations
- Global contrast enhancement

UNIVERSITY OF TWENTE

ENHANCEMENT BY HISTOGRAM OPER.

- One way or another 'map' DN value to
 - Grey value

or

- Red
- Green
- Blue

TRANSFER FROM DN TO BRIGHTNESS

HOW TO SET EFFECTIVE CONTRAST?

- Assess expected objects, their signatures and thus representation in the (histogram of the) spectral band at hand
- Set contrast to most interesting ranges (objects)

- SPOT B1 Green
- Expected objects: water, various crops and forest on land
- Expected DN: water very low, forest low, crops low to medium

 Minimum input value and maximum input value for setting the Transfer Function

- Use % to cutoff (eg 2.5/5)
 - Assumes lowest 2.5 % and highest 5 % are obsolete

UNIVERSITY OF TWENTE.

ALTERNATIVE – STANDARD DEVIATIONS (WOOCLAP)

Based upon

- Mean (μ)
- +/- 2 Standard
 Deviation (σ)

Nice start **BUT**

Assumes Normal or Gaussian distribution

Is this efficient or effective or both or none?

UNIVERSITY OF TWENTE.

RULES (USE WITH CARE)

- Steeper transfer function on the histogram -> introduces more contrast
- Transfer function more to the left of the histogram -> brighter image (image with large bright areas)
- Transfer function more to the right of the histogram -> darker image (image with large dark areas)
- Steeper transfer function on some range reduces contrast on other ranges

UNIVERSITY OF TWENTE.

(PIECE WISE) LINEAR CONTRAST STRETCH

STRETCHING METHODS (FUNCTIONS)

- Linear
- Piece wise linear
- Histogram equalisation
- Gamma
- . .
- . . .

All transferring DNs to brightness

the value don't change

UNIVERSITY OF TWENTE.

HISTOGRAM EQUALISATION

is only push button

- Transfer function is the cumulative histogram (nonlinear)
 - Steeper transfer function at higher frequencies!

LINEAR AND HISTOGRAM EQUALISED STRETCH

QGIS 3.22.9

- Concept of transfer function is not supported
- Piece wise linear contrast enhancement is not supported
 - QGIS works with 2 breakpoints = linear

Prepare for the Question Hour

lower value will be match to white, dan the high value will be black
Which Contrast belongs to each image? LU image = Original image UNIVERSITY OF TWENTE.