

- Remote sensing essentials in three lectures:
 - Today: Applications, orbits, radiation, resolution
- Tomorrow: Radiative transfer in the atmosphere
- Next week: Atmospheric correction
- Focus on conceptual understanding (not too many equations)
- Approach:
 - Self study
 - Interactive lecture
 - Exercise
 - Exam

IMAGE INTERPRETATION

"Understanding the basics of electromagnetic (EM) radiation will help you in making more profound choices and enable you to deal with sensors of the future." - Core book, chapter 2. UNIVERSITY OF TWENTE.

COURSE LEARNING OUTCOMES

- Explain the basic concepts in geo-information science relevant for the acquisition of geospatial data and for their entry and management in a database.
- Define spatial references, coordinate systems and projections for geospatial data and apply relevant transformations for data integration.
- Explain electromagnetic radiation and the main processes of its interaction with the Earth surface and atmosphere.
- Apply radiometric and atmospheric correction and image enhancement techniques to a remote sensing dataset.
- Explain visualization principles and apply these for the visualization of geospatial data products as input for interpretation and information sharing.

QUESTIONS?

UNIVERSITY OF TWENTE.

INTRODUCTION

- Main topic: Remote sensing spectral, spatial, temporal resolution trade-offs
- At the end of this lesson, you can:
 - List applications of satellite remote sensing
 - Describe LEO and GEO orbits
 - Explain basic properties of EMR
 - Name the main characteristics of satellite-based sensors
 - Explain the inter-dependencies of image resolution
 - Argue which sensor is most suitable for particular EO study cases

OUTLINE

- Intro: applications of satellite data
- Satellite orbits
- Electromagnetic Radiation
- Sources of EMR
- Resolution
- Exercise: which sensor is optimal?

WHAT DO WE USE SATELLITE DATA FOR?

How to participate?

UNIVERSITY OF TWENTE.

 (\rightarrow)

UNIVERSITY OF TWENTE.

APPLICATIONS: EARTH OBSERVATION (EO)

• Observation (characterization, monitoring, classification) of nearly all parts of the Earth System:

- Atmosphere uap air
- Lithosphere batu
- Hydrosphere air
- Cryosphere es
- Biosphere kehidupan

APPLICATIONS: EARTH OBSERVATION (EO)

Observation (characterization, monitoring, classification) of nearly all parts of the Earth System:

- Atmosphere
- Lithosphere
- Hydrosphere
- Cryosphere
- Biosphere
- Anthroposphere

QUIZ: IDENTIFY THE "SPHERE"

■ Figure 1

NO2 : atmosphere

QUIZ: IDENTIFY THE "SPHERE"

■ Figure 2

UNIVERSITY OF TWENTE.

Kodikara et al., 2023

QUIZ: IDENTIFY THE "SPHERE"

■ Figure 3

Antroposphere : karena ada rumah dan mobil

QUIZ: IDENTIFY THE "SPHERE"

■ Figure 4

UNIVERSITY OF TWENTE. F. Wang et al., 2023

UNIVERSITY OF TWENTE. Wang et al., 2023

QUIZ: IDENTIFY THE "SPHERE"

■ Figure 5

waste water : hydrosphere

UNIVERSITY OF TWENTE. **SATELLITE ORBITS**

WHAT IS AN ORBIT?

Regular trajectory of one body around another

WHAT IS AN ORBIT?

Orbit : lintasan semua benda langit

- Regular trajectory of one heavenly body around another
- Orbital period depends on distance to Earth tidak tertarik oleh bumi: satelit semakin cepat supaya

GEO-STATIONARY ORBIT

Altitude: 35,786 km

Characteristics:

- continually "stares" at same portion of Earth
- images acquired once every hour or so
- low spatial resolution

Posisi satelit tetap terhadap bumi, monitoring sesuatu yg berubahnya cepat

Altitude: 35,786 km

Characteristics:

- continually "stares" at same portion of Earth
- images acquired once every hour or so
- low spatial resolution
- Instrument types:
 - weather
 - communication, navigation

 MeteoSat, GOES, Himawari, FengYun UNIVERSITY 0F TWENTE.

2

UNIVERSITY OF TWENTE.

LOW EARTH (POLAR) ORBIT

Altitude: 200-1200 km

Characteristics:

- Passes over whole* globe
- In sun-synchronous orbit, same local time at each overpass
- Images acquired between twice per day and once every few days
- Medium to high spatial resolution

LOW EARTH (POLAR) ORBIT

Altitude: 200-1200 km

Characteristics:

- Passes over whole* globe
- In sun-synchronous orbit, same local time at each overpass
- Images acquired between twice per day and once every few days
- Medium to high spatial resolution
- Instrument types:
 - EO, Deep space observation, ISS, telecom
- Examples:

■ ESA Sentinels, NASA Landsats, Cubesats UNIVERSITY OF TWENTE.

UNIVERSITY OF TWENTE.

25

2

WHAT DOES THE SATELLITE SEE?

ELECTROMAGNETIC RADIATION IS...

All around us!

ELECTROMAGNETIC RADIATION IS... All around us!

Key characteristic?

UNIVERSITY OF TWENTE.

EMR AS A WAVE

Interference patterns

UNIVERSITY OF TWENTE.

Images: https://phiab.com/holomonitor/holographic-microscopy/ Subodh Ghulaxe (https://physics.stackexchange.com/users/22316/subodh-ghulaxe)

EMR AS A WAVE

Interference patterns

UNIVERSITY OF TWENTE.

Images: https://phiab.com/holomonitor/holographic-microscopy/ Subodh Ghulaxe (https://physics.stackexchange.com/users/22316/subodh-ghulaxe)

EMR AS A PARTICLE

■ Digital camera

Less light

2

EMR AS A PARTICLE

UNIVERSITY OF TWENTE.

https://phys.libretexts.org/Bookshelves/Conceptual_Physics/Book%3A_Conceptual_ Physics_(Crowell)/14%3A_Quantum_Physics/14.02%3A_Light_As_a_Particle

https://phys.libretexts.org/Bookshelves/Conceptual_Physics/Book%3A_Conceptual_ Physics_(Crowell)/14%3A_Quantum_Physics/14.02%3A_Light_As_a_Particle

SO WHICH IS IT?

UNIVERSITY OF TWENTE.

- Double-slit experiment
- Expected result:

UNIVERSITY OF TWENTE.

https://phys.libretexts.org/Bookshelves/Conceptual_Physics/Book%3A_Conceptual_ Physics_(Crowell)/14%3A_Quantum_Physics/14.02%3A_Light_As_a_Particle

- Double-slit experiment
- Expected result:

Real result:

Wave & particle!

SO WHICH IS IT?

• We need both approaches for different aspects of remote sensing:

Wave		Particle	
Reflection	memantulkan	Absorption	menyerap
Refraction	patahan	Scattering	menghamburkan
Emission	mengeluarkan	Emission	

- Every object with T>0 K emits radiation
- Blackbody:
- Absorbs all incident radiation
- Emitted radiation depends only on its temperature
- Planck's law: $L_{BB}=\frac{2hc^2}{\lambda^5}\frac{1}{e^{\frac{hc}{\lambda kT}-1}}$
- In thermal equilibrium (no change in T): $L_{BB} = L_{incident}$

UNIVERSITY OF TWENTE.

PLANCK'S LAW OF RADIATION

■ Emission of radiation is governed by Planck's law:

$$L_{BB}(\lambda, T) = \frac{2hc^2}{\lambda^5} \cdot (e^{hc/\lambda kT} - 1)^{-1} \text{ [Wm-2} \mu \text{m}^{-1]}$$

PLANCK'S LAW OF RADIATION

Emission of radiation is governed by Planck's law:

$$L_{BB}(\lambda, T) = \frac{2hc^2}{\lambda^5} (e^{hc/\lambda kT} - 1)^{-1} [\text{Wm-}^{-2} \text{µm-}^{-1}]$$

■ Derivations from Planck's law:

UNIVERSITY OF TWENTE.

UNIVERSITY OF TWENTE.

44

PLANCK'S LAW OF RADIATION

Emission of radiation is governed by Planck's law:

$$L_{BB}(\lambda, T) = \frac{2hc^2}{\lambda^5} \cdot (e^{hc/\lambda kT} - 1)^{-1} [Wm^{-2}\mu m^{-1}]$$

Derivations from Planck's law:

• Wien's law: $\lambda_{max} = \frac{b}{\tau}$

Stefan-Boltzmann equation:

$$M = \sigma T^4$$

UNIVERSITY OF TWENTE.

EMISSION BY SUN AND EARTH

Sun is much hotter than Earth -> λ_{max} shorter and M much greater

di matahari lamda semakin pendek dan energi

UNIVERSITY OF TWENTE.

EMISSION BY SUN AND EARTH

- Sun is much hotter than Earth -> λ_{max} shorter and M much greater
- Emission curves of Sun and Earth barely overlap

Colder objects as Earth emit less radiation in longer wavelengths

REAL OBJECTS

Real objects are not blackbodies, they

reflect and/or

transmit

In thermal equilibrium (T constant):

$$L_{in} = L_E + L_T + L_R$$

menyerap lalu

meradiasikan sepenuhnya

REAL OBJECTS

Real objects are not blackbodies, they

reflect and/or

transmit

In thermal equilibrium (T constant):

$$L_{in} = L_E + L_T + L_R$$

• It follows: $L_{BB} > L_{RB}$

• Emissivity $\varepsilon_{RB} = \frac{L_{RB}}{L_{RB}}$

UNIVERSITY OF TWENTE.

QUIZ ON BLACKBODY RADIATION

How to participate?

UNIVERSITY OF TWENTE.

(>)

Go to wooclap.com

Send @CINZCA to 0970 1420 2908

You can participate

UNIVERSITY OF TWENTE.

CHARACTERISTICS OF ELECTROMAGNETIC RADIATION

L_{incident}

Lincident

 ${\sf L}_{\it reflected}$

∟incident

T=T_{body}

 $T=T_{body}$

T=T_{body}

Maxwell's theory: coupled electric and magnetic fields travelling through space

CHARACTERISTICS OF ELECTROMAGNETIC RADIATION

Maxwell's theory: coupled electric and magnetic fields travelling through space

- Key characteristic of waves: $c = \lambda \nu$ (c speed of propagation, here: speed of light)
- It follows: wavelength λ is inversely related to frequency ν

ENERGY OF EMR

 If wavelength λ is small, frequency ν is large

UNIVERSITY OF TWENTE.

ENERGY OF EMR

- If wavelength λ is small, frequency ν is large
- Max Planck: energy of a photon $Q = h\nu = \frac{hc}{2}$

UNIVERSITY OF TWENTE.

EVIDENCE: LIGHT AS A PARTICLE

- The photo-electric effect:
- Only radiation with correct wavelength causes ejection of electron
- $Q = h\nu = \frac{hc}{\lambda}$

QUIZ - SORT THE EMR RANGES

- By frequency
- By wavelength
- By photon energy

WHAT DO WE MEAN BY RESOLUTION?

- Degree to which two features can be distinguished
- "Knowledge of image resolution is a prerequisite for understanding the information recorded on the images we examine." (Campbell, chapter 10)

SPECTRAL RESOLUTION

- Distance between consecutive steps
- In UV-visible-NIR range, 0.1 100s of nm
- Examples:
 - Lab (2 nm (vis) or 100 nm (NIR))
 - MSI on Sentinel-2 (23-500 nm)
 - OLCI on Sentinel-3 (10-100 nm)

UNIVERSITY OF TWENTE.

wavelength (µm)

SPECTRAL RESOLUTION

- Distance between consecutive steps
- In UV-visible-NIR range, 0.1 100s of nm
- Examples:
 - Lab (2 nm (vis) or 100 nm (NIR))
 - MSI on Sentinel-2 (23-500 nm)
 - OLCI on Sentinel-3 (10-100 nm)
- For atmospheric composition: <0.1 nm!

UNIVERSITY OF TWENTE.

SPATIAL RESOLUTION

- Footprint extent
- Definition dependent on shape

original pixels

Footprint extent

SPATIAL RESOLUTION

original pixels

5

UNIVERSITY OF TWENTE.

Campbell, Chap.10

25

Campbell, Chap.10

TEMPORAL RESOLUTION

- Frequency of observation
 - LEO: orbit inclination and scan width (swath)
 - GEO: repeat time (GEO)

UNIVERSITY OF TWENTE.

https://aerospace.csis.org/aerospace101/earth-orbit-101/ https://www.eumetsat.int/mtg-flexible-combined-imager-fci

TEMPORAL RESOLUTION

- Frequency of observation
 - LEO: orbit inclination and scan width (swath)
 - GEO: repeat time (GEO)
- Accuracy (time averages)

https://aerospace.csis.org/aerospace101/earth-orbit-101/ https://www.eumetsat.int/mtg-flexible-combined-imager-fci

RADIOMETRIC RESOLUTION

RADIOMETRIC RESOLUTION

- Discrete observation <-> continuous signal
- Number of bits used to record (or save) signal
- More discrete bits -> closer to real signal

RADIOMETRIC RESOLUTION

- Discrete observation <-> continuous signal
- Number of bits used to record (or save) signal
- More discrete bits -> closer to real signal

UNIVERSITY OF TWENTE.

RESOLUTION TRADE-OFFS

- Trade offs between spatial & spectral
 - OLCI spectral resolution
 - MSI spatial resolution
 - and temporal!

resolusi spektral yg tinggi, resolusi spatialnya jadi rendah : multispektral

kalau resolusi spatialnya tinggi, resolusi spektralnya rendah : pankromatik banyak band yg direkam

RESOLUTION TRADE-OFFS

- Trade offs between spatial & spectral
 - OLCI spectral resolution
 - MSI spatial resolution
 - and temporal!

- Confounding factors: atmosphere, illumination
- Topic of atmospheric correction (lecture next week!)

TODAY'S EXERCISE

- Supervised exercise:
 - Farzaneh Dadrass Javan
 - Srinidhi Gadde
- **1**0:45 15:30
- Rooms 2405 and 2409
- At the end of this exercise, you will be able to:
 - 1. Remember how to apply basic physical and mathematical skills for EO applications
 - 2. Perform basic calculations with properties of EMR
 - 3. Argue which sensor is most suitable for particular EO study cases

UNIVERSITY OF TWENTE.

LITERATURE

- Core textbook: The core of GIScience: Tolpekin & Stein (eds), 2013
- Introduction to Remote Sensing, 4th Edition, J.B. Campbell, 2007

