

INTRODUCTION

- Main topic: Radiative transfer
- At the end of this lesson, you can:
 - Describe the main modes of remote sensing: active and passive
 - Perform calculations of the transmission and attenuation of electromagnetic radiation
 - Explain what the concepts reflection, absorption, emission, and scattering are and where they are found in the atmosphere
 - Extract spectral information from (Earthshine) spectra
 - Perform comparative analyses of satellite reflectance vs. lab reflectance curves

UNIVERSITY OF TWENTE.

- Introduction
- Recap: EMR, Blackbodies & Resolution
- Radiative transfer
 - Attenuation, transmission, reflection
 - Absorption
 - Scattering
- Types of remote sensing for EO
- Exercise

APPLICATIONS OF RADIATIVE TRANSFER

- You need to understand RT when you want to know:
- how far your signal will travel
- how strong your source needs to be
- what you're looking at (remote sensing)
- what your radiation might do...

APPLICATIONS OF RADIATIVE TRANSFER

- You need to understand RT when you want to know:
 - how far your signal will travel
 - how strong your source needs to be
 - what you're looking at (remote sensing)
 - what your radiation might do...

WHY DO WE NEED TO UNDERSTAND RT?

 Interpretation of satellite observations

- Radiation is affected by atmosphere and surface
- If we understand how, we can:
- Remove atmospheric effects from signal
- Retrieve atmospheric information from signal

UNIVERSITY OF TWENTE.

RECAP: ELECTROMAGNETIC RADIATION

- Electromagnetic radiation consists of coupled electric and magnetic fields travelling through space at ...?
- EMR can be described as wave or particle

RECAP: ELECTROMAGNETIC RADIATION

- Electromagnetic radiation consists of coupled electric and magnetic fields travelling through space at ...?
- EMR can be described as wave or particle
- $c = \lambda \nu$, therefore if λ is large, ν is...?
- $Q = hv = \frac{hc}{\lambda}$, therefore if λ is large, Q is...?

RECAP: BLACKBODY RADIATION

- Every object with T>0 K emits radiation
- Blackbody:
 - Absorbs all incident radiation
 - Emitted radiation depends only on its temperature

UNIVERSITY OF TWENTE.

RECAP: BLACKBODY RADIATION

- Every object with T>0 K emits radiation
- Blackbody:
 - Absorbs all incident radiation
 - Emitted radiation depends only on its temperature
- Planck's law: $L_{BB}=\frac{2hc^2}{\lambda^5}\frac{1}{e^{\frac{hc}{\lambda kT}}-1}$
- In thermal equilibrium (no change in T): $L_{BB} = L_{incident}$
- Wien's law: $\lambda_{max} = \frac{b}{T}$

UNIVERSITY OF TWENTE.

• Stefan-Boltzmann equation: $M = \sigma T^4$

EMISSION BY SUN AND EARTH

- Sun is much hotter than Earth -> λ_{max} shorter and M much greater
- Emission curves of Sun and Earth barely overlap

REAL OBJECTS

Real objects are not blackbodies, they

reflect and/or

transmit

• In thermal equilibrium (T constant):

$$L_{in} = L_E + L_T + L_R$$

• Emissivity $\varepsilon_{RB} = \frac{L_{RB}}{L_{RB}}$

T=T_{body}

Lincident

UNIVERSITY OF TWENTE.

@ Copy participation link

UNIVERSITY OF TWENTE.

QUIZ ON BLACKBODY RADIATION

How to participate?

UNIVERSITY OF TWENTE.

(>)

RECAP: SPECTRAL RESOLUTION

RECAP: SPECTRAL RESOLUTION

UNIVERSITY OF TWENTE.

RECAP: SPATIAL VS. RADIOMETRIC RESOLUTION

Spatial

Radiometric

UNIVERSITY OF TWENTE.

UNIVERSITY OF TWENTE.

WHAT DOES THE ATMOSPHERE DO TO RADIATION? How to participate? 1 Go to wooclap.com 2 Event code CINZCA 1 Send @CINZCA to 0970 1420 2908 2 You can participate

LET ME MAKE THIS CLEAR...

- Satellites do not measure cloud cover or soil moisture content or even temperature
- Satellite instruments detect upwelling (reflected, scattered, emitted) radiation

LET ME MAKE THIS CLEAR...

- Satellites do not measure cloud cover or soil moisture content or even temperature
- Satellite instruments detect upwelling (reflected, scattered, emitted) radiation
- It's up to the scientist to interpret the radiation patterns

UNIVERSITY OF TWENTE.

UNIVERSITY OF TWENTE.

Degree of attenuation (optical air mass m) depends on: path length through medium (L) and density of medium (ρ) But the atmosphere is layered...

ATTENUATION

- Degree of attenuation (optical air mass *m*) depends on:
 - path length through medium (L) and density of medium (ρ)
- But the atmosphere is layered...

UNIVERSITY OF TWENTE.

ATTENUATION

- Degree of attenuation (optical air mass m) depends on:
 - path length through medium (L) and density of medium (ρ)
- But the atmosphere is layered...

UNIVERSITY OF TWENTE.

SO HOW TO CALCULATE TRANSMISSION?

- Bouquer's law: transmission $\tau = e^{-mk}$
 - m = absolute air mass
 - k = extinction coefficient (probability)

SO HOW TO CALCULATE TRANSMISSION?

- Bouguer's law: transmission $\tau = e^{-mk}$
- m = absolute air mass
- k = extinction coefficient (probability)
- For medium with N layers: $mk = \sum_{i=0}^{i=N} m_i k_i$

2

SO HOW TO CALCULATE TRANSMISSION?

- Bouguer's law: transmission $\tau = e^{-mk}$
 - m = absolute air mass
 - k = extinction coefficient (probability)
- For medium with N layers: $mk = \sum_{i=0}^{i=N} m_i k_i$
- Hence: $\tau = e^{-\sum_{i=0}^{i=N} m_i k_i} = \prod_{i=0}^{i=N} e^{-m_i k_i}$
- So transmissions are multiplicative!

SO HOW TO CALCULATE TRANSMISSION?

- Bouquer's law: transmission $\tau = e^{-mk}$
 - m = absolute air mass
 - k = extinction coefficient (probability)
- For medium with N layers: $mk = \sum_{i=0}^{i=N} m_i k_i$
- Hence: $\tau = e^{-\sum_{i=0}^{i=N} m_i k_i} = \prod_{i=0}^{i=N} e^{-m_i k_i}$
- So transmissions are multiplicative!

$$\tau_{\uparrow} = e^{-\int_{z=BOA}^{z=TOA} m(z)k(z)dz}$$

SO HOW TO CALCULATE TRANSMISSION?

- m = absolute air mass
- For medium with N layers: $mk = \sum_{i=0}^{i=N} m_i k_i$

$$\tau_{\uparrow} = e^{-\int_{z=BOA}^{z=TOA} m(z)k(z)dz}$$

$$\tau_{\downarrow} = e^{-\int_{z=TOA}^{z=BOA} m(z)k(z)dz}$$

$$\tau = \tau_{\uparrow} \cdot \tau_{\downarrow} = 0.62 \cdot 0.62 = 0.38$$

$$R = A_{surf} \tau_{\downarrow} \tau_{\uparrow} = 0.41 \cdot 0.62 \cdot 0.62 = 0.16$$

Slant paths are longer -> larger optical air mass

RELATIVE AIR MASS

 Normalization using relative air mass, m_r

$$m_r = \frac{L_S \cdot \rho}{L \cdot \rho} = \frac{m_S}{m}$$

RELATIVE AIR MASS

- Slant paths are longer -> larger optical air mass
- Normalization using relative air mass, m,

$$m_r = \frac{L_s \cdot \rho}{L \cdot \rho} = \frac{m_r}{m_r}$$

- Radiation from Sun to Target: $m_r = \cos \theta_0$
- So: $m = m_r \Sigma \Delta L \rho_i$

QUIZ ON ATTENUATION AND TRANSMISSION

How to participate?

UNIVERSITY OF TWENTE.

(>)

UNIVERSITY OF TWENTE.

Go to wooclap.com

Enter the event code in the top banner

Send @CINZCA to 0970 1420 2908

You can participate

CALCULATE TRANSMISSIONS (1)

A medium has four constituents with optical transmissivities:

$$\tau_1 = 0.99, \ \tau_2 = 0.98, \ \tau_3 = 0.97, \ \tau_4 = 0.96$$

What is the total transmission of the medium?

CALCULATE TRANSMISSIONS (2)

A medium has four constituents with optical transmissivities:

$$T_1 = 0.99, T_2 = 0.98, T_3 = 0.97, T_4 = 0.96$$

What is the total transmission of the medium?

Bouguer's law: transmission $\tau = e^{-mk}$

With increasing solar zenith angle, the relative air mass increases, hence the transmission...

THAT WAS IT FOR THE EQUATIONS!

■ Well, almost...

UNIVERSITY OF TWENTE.

SCATTERING

- Interaction of radiation with large objects (>> wavelength)
 - Reflection
 - Absorption

UNIVERSITY OF TWENTE.

SCATTERING

- Interaction of radiation with large objects (>> wavelength)
 - Reflection
 - Absorption

- 6
- UNIVERSITY OF TWENTE.

- Interaction of radiation with small objects(≤ wavelength)
- Absorption + (partial) re-emission
- Re-emission in all directions: scattering

RAYLEIGH SCATTERING

- Scattering is continuous, but depends on wavelength:
- Size parameter $\alpha = \pi D/\lambda$
- Rayleigh scatter: $\alpha \ll 1$
- Probability of Rayleigh scatter ~λ⁻⁴
- Rayleigh scatter explains why we perceive the sky as blue and sunsets as red

UNIVERSITY OF TWENTE.

Photograph by Gabriel Parodi, ITC

LET'S DO AN EXPERIMENT!

• What happens if we shine a blue, green or red laser into a container of milk?

ATTENUATION IN THE ATMOSPHERE

- Atmosphere is layered:
- Layers separated by temperature profile
- Density decreases exponentially with altitude
- Most gases located in lowest layer

44

ATMOSPHERIC COMPOSITION

- Nitrogen, oxygen, and argon make up 99.96% of the dry atmosphere
- Carbon dioxide (CO₂) adds 0.04%
- Water vapour is variable, mostly in troposphere
- ppm = parts per million (10⁶)
- ppb = parts per billion (10⁹)

UNIVERSITY OF TWENTE.

	Content % Volume or ppmv	Constituent gas
gases	78.084 %	Nitrogen (N₂)
	20.946 %	Oxygen (O ₂)
	0.934 %	Argon (Ar)
	0.0416 % or 416 ppm	Carbon Dioxide (CO ₂)
	0.0024 % or 24 ppm	Other noble gases (Ne, He, Kr, Xe)
	0.00006 % or 6 ppm	Hydrogen (H ₂)
	1.8 ppm	Methane (CH ₄)
	0.27 ppm	Nitrous oxide (NO ₃)
	0 to 0.04 ppm	Ozone (O ₃)
	0.01 ppm	Sulfur dioxide (SO ₂)
	0.001 ppm	Nitrogen dioxide NO ₂
	0.02 ppm	Ammonia (NH ₄)
	0.09 ppm	Carbon Monoxide (CO)
	0.005 ppm	Nitric Oxide (NO)
	0.002 ppm	Hydrogen sulfide (H ₂ S)
	traces	Nitric acid vapor

Variable gases

Permanent

ABSORPTION IN THE ATMOSPHERE

 Question: In which wavelength regions is the atmosphere (mostly) transparent to radiation?

UNIVERSITY OF TWENTE.

ABSORPTION IN THE ATMOSPHERE

ABSORPTION IN THE ATMOSPHERE

- Main absorbers in the atmosphere: O₃, H₂O, CO₂
- Most of the radiation emitted by Earth is absorbed
- In thermal equilibrium: energy received = energy emitted
- Atmospheric windows allow Earth to cool down!

UNIVERSITY OF TWENTE.

https://cimss.ssec.wisc.edu/sage/meteorology/lesson1/AtmAbsorbtion.htm

UNIVERSITY OF TWENTE.

https://cimss.ssec.wisc.edu/sage/meteorology/lesson1/AtmAbsorbtion.htm

GREENHOUSE EFFECT

EXCURSION: EARTH'S ENERGY BUDGET

WHAT DOES THE ATMOSPHERE DO TO RADIATION?

SUMMARY

(>)

UNIVERSITY OF TWENTE. Core book

TODAY'S EXERCISE

- Supervised exercise:
 - Farzaneh Dadrass Javan
 - Srinidhi Gadde
- **1**0:45 15:30
- Rooms 2405 and 2409
- At the end of this exercise, you will be able to:
 - 1. Interpret reflectance spectra
 - 2. Find and analyse lab-based reflectance data, including metadata
 - 3. Extract reflectance spectra from a satellite data set using QGIS
- 4. Compare spectra obtained from the lab and from satellites UNIVERSITY OF TWENTE.

