

- Main topic: Atmospheric correction
- At the end of this lesson, you can:
 - Explain what clouds and aerosols are and how they affect radiative transfer
 - Describe the main modes of satellite remote sensing
 - Compare advantages and disadvantages of dark pixel correction, invariant pixel correction, radiometric correction, and correction using radiative transfer modeling
 - Identify the most suitable mode of atmospheric correction for a particular application
 - Perform simple dark pixel and invariant pixel corrections by hand
 - Explain the spectrally dependent effects of an absolute atmospheric correction
- Perform simple statistical analyses of Level-1 and -2 satellite data
 UNIVERSITY OF TWENTE.

COURSE LEARNING OUTCOMES

- Explain the basic concepts in geo-information science relevant for the acquisition of geospatial data and for their entry and management in a database.
- Define spatial references, coordinate systems and projections for geospatial data and apply relevant transformations for data integration.
- Explain electromagnetic radiation and the main processes of its interaction with the Earth surface and atmosphere.
- Apply radiometric and atmospheric correction and image enhancement techniques to a remote sensing dataset.
- Explain visualization principles and apply these for the visualization of geospatial data products as input for interpretation and information sharing.

OUTLINE

- Introduction
- Recap: Radiative transfer in the atmosphere
- Clouds and aerosols
- Modes of Earth Observation
- Atmospheric correction
 - Histograms
 - Light paths
 - Relative AC
 - Absolute AC
- Exercise

APPLICATIONS OF ATMOSPHERIC CORRECTION

- You need to do an AC to:
 - improve visualization (image enhancement)
 - correct sensor inaccuracies
 - correct surface, atmosphere, and geometrical factors

- Description of source strength
- flux per unit area (in Wm⁻²)
- Radiance I:
 - Measured by satellite instrument
 - flux per unit area and solid angle (in Wm⁻²sr⁻¹)
- Reflectance R:
 - Property of surface, atmosphere, geometry

NOT equivalent to reflectivity!

ATTENUATION

- Degree of attenuation (optical air mass m) depends on:
- path length through medium (L) and density of medium (p)
- But the atmosphere is layered...

UNIVERSITY OF TWENTE.

SO HOW TO CALCULATE TRANSMISSION?

- Bouguer's law: transmission $\tau = e^{-mk}$
 - m = absolute air mass
 - k = extinction coefficient (probability)
- For medium with N layers: $mk = \sum_{i=0}^{i=N} m_i k_i$
- Hence: $\tau = e^{-\sum_{i=0}^{i=N} m_i k_i} = \prod_{i=0}^{i=N} e^{-m_i k_i}$
- So transmissions are multiplicative!

$$\tau_{\uparrow} = e^{-\int_{z=BOA}^{z=TOA} m(z)k(z)dz}$$

10

RELATIVE AIR MASS

- Slant paths are longer -> larger optical air mass
- Normalization using relative air mass, m_r

$$m_r = \frac{L_s \cdot \rho}{L \cdot \rho} = \frac{m_s}{m}$$

- Radiation from Sun to Target: $m_r = \cos \theta_0$
- So: $m = m_r \Sigma \Delta L \rho_i$

UNIVERSITY OF TWENTE.

SCATTERING

- Interaction of radiation with large objects (>> wavelength)
- Reflection
- Absorption

- Interaction of radiation with small objects (≤ wavelength)
- Absorption + (partial) re-emission
- Re-emission in all directions: scattering

REMEMBER THE EXPERIMENT?

ABSORPTION

LET'S DO THE COFFEE AND MILK EXPERIMENT

- Light is completely attenuated by both milk and coffee
- But what is the difference?

AEROSOLS

- Small particles (0.1-10 µm) suspended in the atmosphere
- Scatter and absorb radiation
- Residence time: hours-days-months
- Separation into primary and secondary aerosols

UNIVERSITY OF TWENTE.

PRIMARY AEROSOLS

- Medium-large size, various shapes

Straw residue burning in Punjab Photo by IndiaToday

Dust storm in Afghanistan Photo by Tonymapping (Wikimedia)

Eruption of Sarychev volcano Photo from ISS - NASA

AEROSOLS

- Small particles (0.1-10 µm) suspended in the atmosphere
- Scatter and absorb radiation
- Residence time: hours-days-months
- Separation into primary and secondary aerosols
- Secondary aerosols

UNIVERSITY OF TWENTE.

- Form from gases in atmosphere
- Small (0.1-0.5 μm), round droplets
- Smog, vog, biogenic aerosols

Smog over a Polish city Photo by Pogribow (Wikimedia)

CLOUDS

Blue planet?

2/3 of planet covered by clouds!

CLOUDS

■ Blue planet?

2/3 of planet covered by clouds!

UNIVERSITY OF TWENTE.

- Clouds dominate radiative transfer and block the surface from view
- Cloud-covered observations are removed

Unless we're interested in clouds!

CLOUDS

- Nearly all clouds in troposphere
- No absorption of visible radiation
- Warm clouds: water droplets >10 µm
- Cold clouds: ice particles
- Radiative transfer complicated!

ACTIVE & PASSIVE

- Passive: receiver only
 - Reflected/scattered radiation from Sun, surface, atmosphere (UV-MW)
 - Emitted radiation from surface, atmosphere (IR and longer)

UNIVERSITY OF TWENTE.

Campbell, chap. 2

ACTIVE & PASSIVE

- Passive: receiver only
 - Reflected/scattered radiation from Sun, surface, atmosphere (UV-MW)
 - Emitted radiation from surface, atmosphere (IR and longer)
- Active: sender and receiver
 - RaDAR (MW and longer)
 - LiDAR (visible)

INTERACTION OF RADIATION WITH THE ATMOSPHERE: LIGHT PATHS

Attenuation detected by the satellite is the attenuation along the light path

INTERACTION OF RADIATION WITH THE ATMOSPHERE: LIGHT PATHS

- Attenuation detected by the satellite is the attenuation along the light path... or rather along all light paths
- What effects do clouds, aerosols, surface, atmosphere have on the light paths?

UNIVERSITY OF TWENTE.

UNIVERSITY OF TWENTE.

INTERACTION OF RADIATION WITH THE ATMOSPHERE: LIGHT PATHS

- Attenuation detected by the satellite is the attenuation along the light path... or rather along all light paths
- What effects do clouds, aerosols, surface, atmosphere have on the light paths?
- attenuation
- change of direction

DISCUSSION

What is the influence of topography on light paths?

UNIVERSITY OF TWENTE.

DISCUSSION

What is the influence of topography on light paths?

- Shadows
 - Only indirect radiation on target
 - Less information

UNIVERSITY OF TWENTE.

What is the influence of topography on light paths?

- Only indirect radiation on target
- Less information
- Less Rayleigh scatter
 - Atmosphere most dense near surface
 - Adapt AC

UNIVERSITY OF TWENTE.

HISTOGRAMS

RELATIVE AC (1)

Dark object subtraction

Assume reflectance of dark target due to atmosphere only

Subtract this value from all reflectances

Each channel separately!

J.Campbell: Introduction to Remote Sensing, 2007

Dark object subtraction

Assume reflectance of dark target due to atmosphere only

Subtract this value from all reflectances

Each channel separately!

■ Simple, "cheap" method

Universal applicability

• if dark areas are present

Approximation

No absolute physical quantity

UNIVERSITY OF TWENTE.

https://www.slideserve.com vilmos/image-preprocessing

J.Campbell: Introduction to Remote Sensing, 2007

UNIVERSITY OF TWENTE.

- Dark and bright reflective-invariant areas
- In a time series, assume that atmosphere is only cause of changes
- Calibrate slave images to master

Figures from G. Parodi (https://www.slideshare.net/parodign/ atmospheric-correction-albuferaweb)

RELATIVE AC (2)

- Dark and bright reflective-invariant areas
- In a time series, assume that atmosphere is only cause of changes
- Calibrate slave images to master

Simple

Master date A

 Approximate; no absolute physical quantity UNIVERSITY OF TWENTE.

ABSOLUTE AC

- Known target
- Adjustment to radiances detected by calibrated instrument
- Simple, absolute physical quantities, not exact

UNIVERSITY OF TWENTE.

ABSOLUTE AC

- Known target
- Adjustment to radiances detected by calibrated instrument
- Simple, absolute physical quantities, not exact
- Modelling of atmosphere
- Radiative Transfer Model (RTM)
- Exact
 - If input parameters are known
- Expensive

UNIVERSITY OF TWENTE.

- RTMs calculate the signal observed at TOA
- What input do they need?

How to participate?

UNIVERSITY OF TWENTE.

TODAY'S EXERCISE

- Supervised exercise:
 - Haidi Abdullah
 - Srinidhi Gadde
- **1**0:45 15:30
- Rooms 2405 and 2409
- At the end of this exercise, you will be able to:
 - 1. Perform simple dark pixel and invariant pixel corrections by hand
 - 2. Explain the spectrally dependent effects of an absolute atmospheric correction
 - 3. Perform simple statistical analyses of Level-1 and -2 satellite data

UNIVERSITY OF TWENTE.

LITERATURE

- Core book
- Campbell
- Chen, Y., et al: "Stripe noise removal of remote sensing images by total variation regularization and group sparsity constraint", Remote Sens. 2017, 9(6), 559, https://doi.org/10.3390/rs9060559

