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Summary of Steps in Random Forest with Bootstrapping 

1. Create Multiple Bootstrap Samples: Generate multiple bootstrap samples from the 
original dataset. 

2. Train Decision Trees: Train a decision tree on each bootstrap sample. 
3. Aggregate Predictions: For classification, use majority voting. For regression, 

average the predictions. 
4. Evaluate with OOB Error: Use the out-of-bag samples to estimate the performance 

of the model. 

Example 

Assume you have a dataset with 100 data points. To build a Random Forest with 10 trees: 

1. Generate 10 Bootstrap Samples: Each sample contains 100 data points selected with 
replacement from the original dataset. 

2. Train 10 Trees: Train one decision tree on each bootstrap sample. 
3. Predict and Aggregate: For a new data point, each tree makes a prediction. For 

classification, the class with the most votes is the final prediction. For regression, the 
final prediction is the average of the tree predictions. 

4. Calculate OOB Error: For each data point, use the trees that did not include it in 
their bootstrap sample to make a prediction and compare it to the true value to 
estimate the error. 

 

 

 

 

 

 

 

 

 

 

 

 

 



In Principal Component Analysis (PCA), eigenvalues and eigenvectors (often referred to as 
eigenfactors in some contexts) play crucial roles in transforming the original data into a new 
coordinate system where the dimensions (principal components) are ordered by their 
importance. Here’s a detailed explanation: 

Eigenvalues and Eigenvectors in PCA 

1. Covariance Matrix: 
o PCA starts by calculating the covariance matrix of the data. This matrix 

captures the variances and covariances between pairs of features in the dataset. 
2. Eigenvalues and Eigenvectors: 

o The eigenvalues and eigenvectors of the covariance matrix are then computed. 
These are fundamental in PCA: 

 Eigenvectors (Principal Components): Directions in the data space 
along which the data varies the most. 

 Eigenvalues: Scalars that indicate the magnitude of variance in the 
direction of the corresponding eigenvector. 

Steps in PCA 

1. Standardization: 
o The data is often standardized (mean-centered and scaled) so that each feature 

has a mean of zero and a standard deviation of one. 
2. Covariance Matrix Calculation: 

o Compute the covariance matrix of the standardized data to understand how the 
variables vary with each other. 

3. Eigen Decomposition: 
o Perform eigen decomposition on the covariance matrix to find its eigenvalues 

and eigenvectors: 
 Covariance matrix C\mathbf{C}C 
 Eigenvector v\mathbf{v}v and eigenvalue λ\lambdaλ satisfy the 

equation: Cv=λv\mathbf{C} \mathbf{v} = \lambda \mathbf{v}Cv=λv 
4. Principal Components: 

o The eigenvectors are the principal components. They form a new basis for the 
data, transforming it into a new coordinate system. 

o The eigenvalues indicate the amount of variance captured by each principal 
component. 

Interpretation of Eigenvalues and Eigenvectors 

• Eigenvectors (Principal Components): 
o Each eigenvector represents a direction in the original feature space. These 

directions are orthogonal (perpendicular) to each other. 
o The first principal component (eigenvector corresponding to the largest 

eigenvalue) captures the most variance in the data. 
o Subsequent principal components capture the remaining variance, subject to 

being orthogonal to the previous components. 
• Eigenvalues: 

o Eigenvalues indicate the variance explained by each principal component. 



o A higher eigenvalue means that the corresponding principal component 
explains a larger part of the total variance in the data. 

o The sum of all eigenvalues equals the total variance in the original data. 

Example 

Consider a dataset with two features. After standardization and covariance matrix 
computation, suppose we get the following covariance matrix: 

 

Here: 

• The first eigenvector v1\mathbf{v}_1v1 (corresponding to λ1\lambda_1λ1) captures 
most of the variance in the data. 

• The second eigenvector v2\mathbf{v}_2v2 (corresponding to λ2\lambda_2λ2) 
captures the remaining variance. 

Using PCA for Dimensionality Reduction 

1. Transformation: 
o The original data is projected onto the new basis formed by the principal 

components. 
o This transforms the data into a new coordinate system where the axes are 

ordered by the amount of variance they capture. 
2. Selecting Principal Components: 

o To reduce dimensionality, select the top kkk principal components (those with 
the highest eigenvalues) and transform the data accordingly. 

o The goal is to retain as much variance as possible while reducing the number 
of dimensions. 

Summary 

• Eigenvalues in PCA represent the amount of variance explained by each principal 
component. 

• Eigenvectors are the directions in which the data varies the most, and they form the 
new basis for the transformed data. 

• PCA uses these eigenvalues and eigenvectors to transform and reduce the 
dimensionality of the data while preserving as much of the original variance as 
possible. 

 



Example PCA 

ou are given a dataset with the following points in a two-dimensional space: 

{(1,2),(3,3),(4,4),(5,5),(7,8)}\{(1, 2), (3, 3), (4, 4), (5, 5), (7, 8)\}{(1,2),(3,3),(4,4),(5,5),(7,8)} 

1. Standardization: Standardize the dataset by centering it (subtracting the mean) and 
scaling it (dividing by the standard deviation). 

2. Covariance Matrix: Compute the covariance matrix of the standardized data. 
3. Eigenvalues and Eigenvectors: Calculate the eigenvalues and eigenvectors of the 

covariance matrix. 
4. Principal Components: Determine the principal components based on the 

eigenvalues and eigenvectors. 
5. Transform Data: Transform the original data points into the new coordinate system 

defined by the principal components. 

Provide your solutions in the following steps and fill in the respective tables: 
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