UNIVERSITY OF TWENTE.

Introduction to Machine Learning and Clustering

Mahdi KHODADADZADEH Assistant Professor Faculty of Geo-Information Science and Earth Observation (ITC) Department of Geo-information Processing (GIP) m.khodadadzadeh@utwente.nl

May 2024

FACULTY OF GEO-INFORMATION SCIENCE AND EARTH OBSERVATION

Why Kmeans is the most popular algorithm?

- From a theoretical standpoint, k-means is not a good clustering algorithm in terms of efficiency or quality (the running time, locally optimal solution, initialization, ...)
- Why is it one of the top 10 algorithms in data mining? Why is it still popular even as datasets have grown in size?
- The advantage of k-means is its simplicity. In practice the speed and simplicity of k-means cannot be beat.
- Scaling k-means to massive data is relatively easy due to its simple iterative nature.
- > Many works have focused on improving this algorithm.

Wu, Xindong, et al. "Top 10 algorithms in data mining." *Knowledge and information systems* 14.1 (2008): 1-37. Bahmani, Bahman, et al. "Scalable k-means++." *arXiv preprint arXiv:1203.6402* (2012).

UNIVERSITY OF TWENTE.

A better way to initialize

- Choosing the centers one by one in a controlled fashion.
- k-means++ algorithm selects only the first center uniformly at random from the data.
- Each subsequent center is selected with a probability proportional to its contribution to the overall error given the previous selections.

Algorithm 1 k-means++(k) initialization.

- 1: $\mathcal{C} \leftarrow$ sample a point uniformly at random from X
- 2: while $|\mathcal{C}| < k$ do
- 3: Sample $x \in X$ with probability $\frac{d^2(x,C)}{\phi_X(C)}$
- 4: $\mathcal{C} \leftarrow \mathcal{C} \cup \{x\}$
- 5: end while

Arthur, David, and Sergei Vassilvitskii. *k-means++: The advantages of careful seeding*. Stanford, 2006.

Optimal k value

You may never find the right number of clusters but you can try to find an optimal one!

Run the algorithm for several consecutive number of clusters (k=1,2,3,...N).

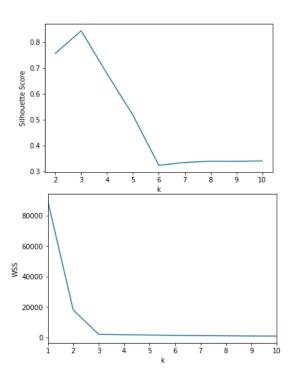
Compute the clustering performance for each number of clusters i.e., k.

Determine the k such that it works well for your problem.

Silhouette Method \rightarrow measures how similar a point is to its own cluster (cohesion) compared to other clusters (separation) for different values of k. The Silhouette Score reaches its global maximum at the optimal k.

Elbow Method \rightarrow calculates the Within-Cluster-Sum of Squared Errors (WSS) for different values of k and chooses the k for which WSS becomes first starts to diminish. In the plot of WSSversus-k, this is visible as an elbow.

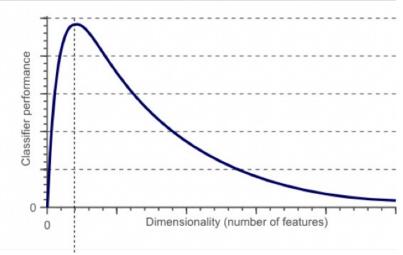
Chek out this link: https://medium.com/analytics-vidhya/how-todetermine-the-optimal-k-for-k-means-708505d204eb



Feature Extraction

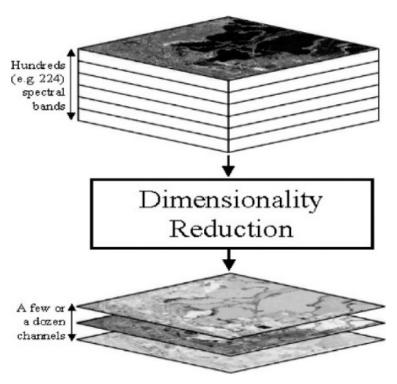
- Choosing discriminating and independent features is key to any machine learning algorithm
- In real applications usually many features are measured while only a very small percentage of them carry useful information towards our learning goal
- We usually need an algorithm that compress our feature vector and reduce its dimension

Curse of dimensionality

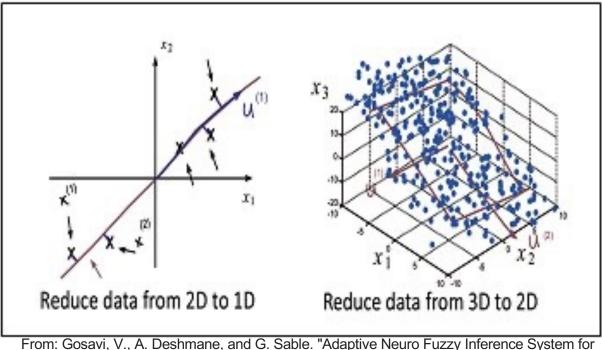


Optimal number of features

- Relatively simple and popular technique
- PCA converts a set of observations into a set of linearly uncorrelated variables, called principal components
- Represents data in a space that better describes the variation
- If a strong correlation between variables exists, the attempt to reduce the dimensionality is reasonable



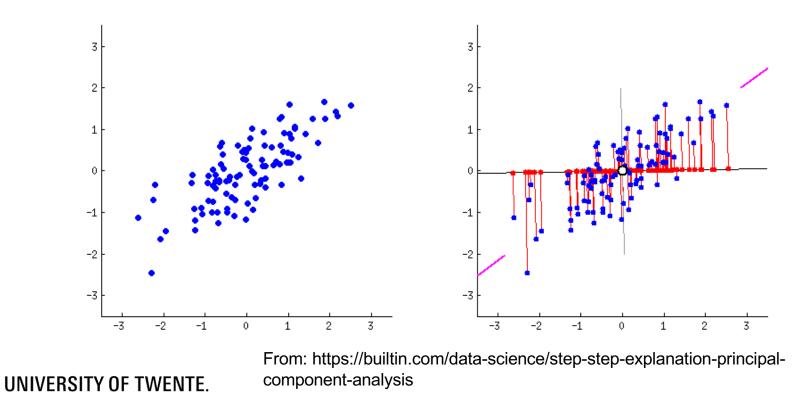
- Identifies directions of maximum variance (in high-dimensional data) and projects the data onto a smaller dimensional subspace while retaining most of the information.
- PCA projects the entire dataset onto a different feature (sub)space



From: Gosavi, V., A. Deshmane, and G. Sable. "Adaptive Neuro Fuzzy Inference System for Facial Recognition." *IOSR Journal of Electrical and Electronics Engineering* 14.3 (2019): 15-22.

ITC

- What the projections look like for different lines (red dots are projections of the blue dots)
- The reconstruction error are given by the length of the connecting red line



- PCA is built on the concepts of eigenvector and eigenvalues
- Creates a projection matrix of the selected k eigenvectors.
- Transforms the original dataset X via the projection matrix and obtains a k-dimensional feature subspace Y

See this link for more details:

https://towardsdatascience.com/the-mathematics-behind-principalcomponent-analysis-fff2d7f4b643

