
Questlons 

vibvaizaio h: box plot 

Q) You want to identify outliers ln a dataset with house sale prices in Enschede. What ) 
exploratory method would you suggest using for this purpose? Explain what the method 
does, and how to interpret its output. (5 points) 
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Answer: An outlier is Yn observation that is numerically distant from the rest of the data. A 
very straightforward method would be box map (or boxplot). It finds six bins categories to 
identi•y the lower and upper outliers. The definition of outlilers is a function of a multiple of 
the inter-quartile range (IQR), the difference between the values for the 75 and 253 
percentile. For example, outside 1.5 times the lQR above the upper quartile and below the 
lower quartile (Q1- 1.5 * IQR or Q3 + 1.5 * IQR). 

Q2) Cluster the following dataset into two groups using the k-means algorithm; considering 
f2 as the maximum number of iterations, samples 3 and 4 as initial cluster centers and |:2 
x1| + |y2-y1| as the distance function. Complete the following tables to report your 
solutions. (9 points) 
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What is the overall classification accuracy? (3 points) 
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Q3) We have applied an Artiflcial Neural Network (e.g., Multi-layer Perceptron) to a 
hypothetical dataset with 4 features (predictor variables) and obtained the following results. 
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What would be the possible architecture (i.e., number of layers and neurons in each layer) 
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Answer: For the input layer we need one neuron per feature, so 4 neurons. For the hidden 
layers, there can be any number of layers and neurons. For the output layer the most 
common approach is to use as many neurons as there are outputs to the classification 
problem with softmax as the activation function. Based on the actual labels, we have 3 
output classes, so 3 neurons in the output layer could be considered. We can determine the 
hidden layer structure experimentally. A simple structure with one hidden layer is sufficient 
for most of the problems. For the number of hidden neurons, a rule of thumb is the average 
of input and output neurons. Here this could be 4 neurons. 
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Overall accuracy= (number of correctly classifled)/(total number of samples), 7/10=0.7(or 
70%) 

1 

Q4) Given the dataset below, we build a simple Decision Tree (DT) with depth 2 and having x 
at the root node. 
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What would be the C1, 2, D1, D2 and D3 in figure (a) for this classifier? (8 points) 

Answer: or example C1: o-55, Dl: cdass 1, 2:p=75, 02: cdass 1, D3: class 0 

y<3 

H we classify the test vector (x=2,y=3] with this classifier which class does this vector belong 
to? (3 ponts) 

Yes (4) 

stations across Chlna. 

QS) We have a dataset that contains the daily average ground-level fine particle pollution 
(le., PM2.5) measurements collected from 1479 foced air quality monitoring stations acrass 
China during 2014-2016. In this dataset each row denotes the reading from one station at a 

speific date. Here are its first few rows: 
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latitude longtitude date PM2.5 

haidianbeibudnqu 40.09068 | 116.173553 1/1/2014 113 
haidianbeibuinqu 40.09068 116.173553| 1/2/2014 12.1 

- fraiing data ’. 

Let's Imagine, we have also access to spatial datasets that provide several environmental, 
meteorological, and land-use variables at a fine spatial resolution across China (i.e., 
1 km x1 km). 

Given these datasets, can we use a machine learning model to predict daly PM25 at 
1 km x 1 km grid cells in the entire China? Explain whlch type of algorithm (Le. dasifiation 
or regressilon) we should use, and what the training data and input and output variables are. 

Please be as specific as possible. (7 polnts) line dotnso 
Answer: Yes, we can use Yegression ålgorithms (e.g., Random Farest or Neural Network]. 
The training data can be obtained from the location of ground measurements. We can link 
the station PM2.5 measurements with the spatial dataset at theslocationsand build the 
training dataset. So the énvironmental, meteorologlcal, and land-use variabBes would be the 
predlctor varlables and PM2.5 the target varlable. 'A rule of thumb to divide the dataset into 
training and testing could be 80%-20%. The trained model can be used to estimate PM2.5 
for locations where we do not have monitoring stations but we have access to the spatial 
datasets. The success of this methodology requires a good spatial distribution of monitoring 
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5)1n hyperspedrl ingnt also lered irnaging spectrascopy. the sensor acquires a 

spertral vector whudreds or thausnds f elerneits from everY pixel in a given scene. It 
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iess cbsuVtornswer: This dataset has too many feztures e, the nurnber of features is more than the 
number of observations). So we lace the Curse af Dimensionaity lf we have mare features 

than observations, ae have the risk of overfitting in supervised learning, so the perfarmance 
wll drop. Moreover, he observations become harder to ciuster: When we have toca many 

Ltêatures, the observations appear at equal distances from each gther. So defining 
meaningf dusters wll be hard. 
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ML capvre too what could be a possible soluion? 2 points) rewce dimunsicrali ty (e). 
dimensionality reduction technique (Le., feature etraction or selection) can help us in 

this situation. For example, PCA is a technique for reducing the cimensionafity. It projects 
the data along the directions where there is the largest variation of data. In this case by 

reducing the dimension to 10, we can reach a gOOd balance between the number of 
observations and the number of features: 200/10=20 1 9 
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