
Principal Component Analysis

Contents

Introduction

Setup

The General PCA Subspace

The Setup

From Approximate Equality to Minimizing Function

Deriving Principal Component Spanning Vectors

Data Points, Data Vectors

The First Principal Component: the Setup

The First Principal Component: the Derivation

Deriving the Second, Third, ... Principal Components

Introduction

Many of today's popular data types--like images, documents from the web, genetic data, consumer information--a

very "high-dimensional." By high-dimensional we mean that each piece of data consists of many many individual p

coordinates. For example, take a grayscale digital image like the one shown in the image below. Such an image is m

many small squares called "pixels," each of which has a brightness level between 0 (completely black) and 255 (co

white). In other words, a grayscale digital image can be thought of as a matrix whose value is equal to the b

level of the pixel in the image. (A color image is then just a set of three such matrices, one for each color ch

green, and blue.) In a megapixel grayscale image, not too large by today's standards, there are one million pixels/b

values--this makes such an image one-million-dimensional datapoint (having one dimension for each of its one mi

pixels).

This high dimensionality makes performing standard machine learning tasks like face recognition--or the problem

identifying the identity of a person from an image--directly on the image itself computationally intractable, as the

calculations involved with such a task typically grows at least quadratically with the dimension of the data (see e.g

Newton's method). Because of this property, reducing the dimension of data prior to processing is often a crucial

making efficient machine learning algorithms.

Setup

One standard way of reducing the dimension of a data is called principal component analysis (or PCA for short).

Geometrically speaking, PCA reduces the dimension of a dataset by squashing it onto a proper lower-dimensional

i, j()th

i, j()th

https://brilliant.org/wiki/newtons-method/

more generally a hyperplane, also often referred to as a subspace) which retains as much of the original data’s defi

characteristics as possible.

The gist of this idea is illustrated with a two-dimensional toy data set shown in the image below, with the two-dime

data squashed (or projected) onto a proper one-dimensional line that retains much of the shape of the original dat

words, the dimension of the dataset has been reduced from two to one: a 50% reduction. In practice this amount

much greater; for example, it is quite common for face recognition tasks to reduce images to 1% or less of their or

dimension.

How do we find the PCA subspace? In short, we can set up a problem that, when properly solved, recovers a spann

a collection of vectors which spans the proper subspace. To see how this is done, all we need to do is follow our no

begin by writing out our goal with PCA more formally.

So, first let us say that we have data points , each a vector of dimension . Expressing our goal with PC

formally, we want to determine a good -dimensional subspace that represents the data well the value of

typically chosen according to computational limitations or via a skree plot{[}red link{]} Remember from {[}red lin

algebra{]} that in -dimensional space any -dimensional subspace is spanned by linearly independent vector

we will denote as note these are also length vectors as well In other words, any point in this subspa

defined by a linear combination of the spanning vectors as

where the exact value of the weights is dependent on the particular chosen. With this in mind, how c

formally express the goal of PCA?

Well, suppose our dataset is in fact represented very well by the subspace spanned by a particular set of vectors

Formally, then, if our data point lies approximately in the span of we have that

where the weights are tuned specifically for the point and is interpreted somewhat loosely as

approximately in this span Saying that all points lie approximately in this span then means that the above hold

As a quick example, in the image below, we show a prototype of PCA dimension reduction applied to the task of fa

recognition. Here, given a database of known individuals, where each input data is a facial image, we apply PCA

the dimension of the database. As shown in the figure, since the data itself consists of facial images, the spanning

will tend to look like (rather ghostly) "basis faces."

P x ...x 1 P N

K(< N) (
).

N K K

c ...c 1 K (N). x

 c w =
k=1

 ∑
K

k k x,

w , ...,w 1 K x

c
pth c , ..., c ,1 K

 c w ≈
k=1

 ∑
K

k k,p x ,p

w , ...,w 1,p K,p x p ≈ (
). P

x p

Pictures of a single individual in the database will tend to cluster together in the lower dimensional PCA subspace,

represented primarily by a few of the same basis faces. This means that the entire database itself--consisting of im

various people--will tend to look like a collection of fairly distinct clusters of points on our PCA subspace. To recog

individual in a new picture, we then project the new image down onto the learned PCA subspace and identify the i

by simply finding the closest cluster of projected facial images from our database and assigning the associated ide

the person in the new image.

The General PCA Subspace

How do we find a set of spanning vectors for our desired subspace? There are several ways. In this section, we

numerical optimization problem that, when solved, provides some set of spanning vectors for the desired subspac

section that follows, we derive a classic set of spanning vectors--known as principal components--which can be so

"in closed form."

The Setup

Note that by stacking the spanning vectors column-wise into an matrix as and by

 we can write . With this notation the previous equatio

be written more compactly: .

Now that we know what we ideally want---namely, a) a set of vectors that spans a -dimensional subsp

which our dataset approximately lies and b) proper weights for each spanning vector-datapoint pair--how do

actually find them? Let's follow our nose a bit further.

From Approximate Equality to Minimizing Function

Notice that if we have a good spanning set and weights, then the relationship for PCA holding for the point me

the squared distance between and should be quite small. In other words, the value

should be minimal (given indeed that the spanning vectors are linearly independent). In fact, if it is true that all of o

points lie close to the subspace, then the sum of these values over the dataset should be small as well; that is,

K

N × K C C = c ∣c ∣ ⋅ ⋅ ⋅ ∣c [1 2 K]
w =p [w 1,p w 2,p ⋯ w K,p]

T
 c w =∑k=1

K
k k,p Cw p

Cw ≈p x p

c , ..., c 1 K K

w k,p

pth

Cw p x p

Cw − x ∥ p p∥2
2

g = Cw − x

p=1

 ∑
P

∥ p p∥2
2

should be minimal as well. In other words, a great set of values for our spanning set and corresponding weights mi

the above quantity, which we can also refer to as a multivariable function . Although it may seem that we have si

phrased in a slightly different way, we have actually made a crucial step here. This is because we no longer need to

that we have the proper spanning set and weights: if we can minimize the quantity in the equation above, assumin

spanning vectors are linearly independent, we have indeed found them. In fact, many problems in machine learning

form of a minimization problem--including linear regression, logistic regression, and neural networks--and some p

like -means clustering even aim to minimize an extremely similar function.

And we can solve this problem--an entire field of study known as mathematical or nonlinear optimization focuses

on methods for minimizing such multivariable functions. Any set of spanning vectors returned by minimizing the a

technically defines a PCA subspace.

Deriving Principal Component Spanning Vectors

Here, we derive a classic set of "principal component" spanning vectors, which can be computed in closed form an

addition to being linearly independent, are actually orthonormal [link] as well (that is, they are all perpendicular to

and have unit length). This is done by deriving one principal component vector at a time--from the most to least

representative of the dataset. However, note that while these spanning vectors can be derived in "closed form," th

require considerable computation to employ in practice.

Data Points, Data Vectors

The derivation of each principal component spanning vectors results from thinking of our datapoints as vectors. R

we can always switch back and forth in our minds between thinking of a "point" equivalently as a vector, or an arro

stemming from the origin whose head lies precisely where the point does. This is illustrated with a toy dataset in th

below, where for simplicity the data is assumed to be centered at the origin. We will assume our data is origin-cent

-this will just simplify the calculations that follow and will not affect the final results. Moreover, this is usually done

practice prior to performing PCA anyway.

Thinking of a set of origin-centered points (left panel) as a set of vectors (middle and right panels--note in both

origin is shown as a large black dot from which the vectors stem for visualization purposes only) motivates the s

principal component spanning vectors (as those which highly correlate with the data). In the right panel, the two

black arrows are the first and second principal components of the data, and respectively. Here the first co

is drawn longer for visualization purposes only.

Now that we are thinking in terms of vectors, let's reason out the value of the first principal component, or the spa

vector of our ideal subspace. This should be the unit length (spanning) that determines a line about which our dat

most spread out or, in other words, the one that generally aims in the same direction as our data vectors.

The First Principal Component: the Setup

g

k

c 1 c ,2

https://brilliant.org/wiki/linear-regression/
https://brilliant.org/wiki/logistic-regression/
https://brilliant.org/wiki/neural-networks/?wiki_title=neural%20networks
https://brilliant.org/wiki/kmeans-clustering/?wiki_title=\(k\)-means%20clustering
https://brilliant.org/wiki/kmeans-clustering/?wiki_title=\(k\)-means%20clustering
https://brilliant.org/wiki/kmeans-clustering/?wiki_title=\(k\)-means%20clustering

Take the trivial example of a single data vector , as illustrated in the picture below; we can tell if a spanning vecto

generates such a line for if or lies in the same direction as . Mathematically speaking, we can tell if this

the case if the inner product between the two vectors or if is as large and positive (the former indi

 points in the direction of , while the latter indicating - does). Combining these two possibilities, we can then

the unit length generates a representative line for the vector if is large (it is always positive).

(left panel) A vector points in the direction of a data vector and the inner product is large and positiv

(middle panel) Likewise, this is a case where points in the direction of and is large and positive.

(right panel) The case with data vectors holds analogously (see text for further details).

Analogously, generates a representative line for data vectors when the total squared inner produc

the data

is large, and the larger the better. In fact, we want this to be as large as possible, since the larger its value the bette

generated by captures the spread of the dataset. So, how do we determine the that maximizes this quantity?

The First Principal Component: the Derivation

Here comes the math. Let's rewrite the equation above--this will help tease out the answer. Denote by the

formed by stacking the data vectors columnwise as . Then the above can be written

equivalently as

Here's where we need a fundamental fact from linear algebra known as the eigenvalue decomposition of a matrix

the spectral theorem of symmetric matrices. Using this fact, we can decompose the matrix as

where each is a real eigenvalue, , and the set of eigenvectors are orthono

is, orthogonal and of unit length). Replacing with this eigendecomposition in the equation above, we then ha

equivalently that

Now, since is the largest eigenvalue, we can see that it must be the smallest upper bound possible on this quant

x
x c 1 −c 1 x

x c

T
1 x −c

T (1)
c 1 x c 1

c 1 x x c (T
1)

2

c 1 x, x c

T
1

−c 1 x x −c

T (1)
P

c 1 P x , ...,x 1 P

x c

p=1

∑
P

(p
T

1)
2

c 1 c 1

X N ×
X = [x 1 x 2 ⋯ x P]

 x c
=

p=1

 ∑
P

(p
T

1)
2

∥X c ∥ =T
1 2

2 c XX c .1
T T

1

XXT XX =T
 d

p=1
 ∑

P

d p d ≥1 d ≥2 ⋯ ≥ d P N × 1 e , ..., e 1 P

XXT

c XX c =1
T T

1 c d e e c =1
T (

p=1

 ∑
P

p p p
T) 1 d c e e c =

p=1

 ∑
P

p 1
T

p p
T

1 d e c .
p=1

 ∑
P

p (p
T

1)
2

d 1

 d e c ≤
p=1

 ∑
P

p (p
T

1)
2

 d e c =
p=1

 ∑
P

1 (p
T

1)
2

d e c =1
p=1

 ∑
P

(p
T

1)
2

d .1

https://brilliant.org/wiki/using-the-dot-product/
https://brilliant.org/wiki/eigenvalues-and-eigenvectors/
https://brilliant.org/wiki/spectral-theorem/

Cite as: Principal Component Analysis. Brilliant.org. Retrieved 09:32, June 14, 2024, from https://brilliant.org/wiki/principal-component-analysis/

Here the last equality follows from the fact that the eigenvectors form a basis over which we may decompose a

 and hence , and since has unit length by assumption we have that

Now, since as well as the eigenvectors are all unit length, if we set we can actually achieve this upper b

since the eigenvectors are orthonormal, i.e. when and when since we have

Therefore, the first principal component is , i.e. the eigenvector associated with the largest eigenvalue of t

.

Deriving the Second, Third, ... Principal Components

Deriving the additional principal components follows by induction in a manner very much analogous with the deriv

the first. That is, suppose we have derived the first principal components as the eigenvectors associat

the largest eigenvalues of the matrix . We then want to show that the principal component is th

eigenvector of associated with the largest eigenvalue.

In order to do this, we again use the eigen-decomposition of in order to write the above as

where the last equality holds because is assumed perpendicular to the first principal components. Follow

argument for the first principal component, here again we can derive an upper bound on the above as

and complete the proof by again noting that we can meet the upper bound by setting .

c 1

α e

p=1
 ∑

P

p p α =p e c p
T

1 c1 c =∥ 1∥2
2

 e c ∑p=1
P (p

T
1)

2

c 1 c =1 e ,1

e e =p
T

1 0 p = 1, e e =p
T

1 1 p = 1)

 d e c =
p=1

 ∑
P

p (p
T

1)
2

 d e e =
p=1

 ∑
P

p (p
T

1)
2

d .1

c =1 e 1

XXT

k − 1 k − 1
k − 1 XXT kth c k

XXT kth

XXT

c XX c =k
T T

k d e c =
p=1

 ∑
P

p (p
T

k)
2

 d e c ,
p=k

 ∑
P

p (p
T

k)
2

c k k − 1

 d e c ≤
p=k

 ∑
P

p (p
T

k)
2

d e c ≤k

p=k

 ∑
P

(p
T

k) d k

c =k e k

https://brilliant.org/wiki/principal-component-analysis/
https://brilliant.org/wiki/writing-a-proof-by-induction/

