VARIOUS TYPES OF INTERACTIONS

Adapted from Batty (2005)

Environment – Environment interaction

VARIOUS TYPES OF INTERACTIONS

Adapted from Batty (2005)

HOW CAN ENVIRONMENTS CHANGE?

- Because of an action of an agent
- On their own
- Because of a change in another environment

5

EXAMPLE EVACUATION MODEL

Nearest Exit

SMOKE DEVELOPING

> Wolf Sheep Predation - NetLogo)			
File Edit Tools Zoom Tabs Help	2			
Interface Info Code				
Edit Delete Add	normal speed	on ticks	Settings	
setup go g	In show-energy?	★ ticks: 18		
Off grass? grass-regrowth	-time 30			1456
Sheep settings	Volf settings			
initial-number-sheep 100	initial-number-wolves 50		2.2.2	11 2.0
sheep-gain-from-food 4	wolf-gain-from-food 20			
sheep-reproduce 4 %	wolf-reproduce S-%			
sheep wolves 120 43	grass / 4 307			
populations	-	1 1 1 1 1 1 1 1 1 1		
361 ĝ	wolves			
o time	100		KR 21	

Wilensky (1997)

А.

SUMMARY

Environment impacts another environment (Fire leads to smoke)

Agent-Environment Interaction- Summary

Let us continue with interactions that include the environment.

In the previous lecture, we introduced interactions and focused on agent-agent interactions.

In this lecture, we will continue to talk about interactions, but we will focus on

- agent-environment interactions,
- environment-environment interactions, and
- environment-agent interactions.

Now that you know a little bit more about agent interactions, we will move to interactions with environments.

- A good way to do this is to think about how environments are dynamic.
- There are three ways in which dynamic environments can change during a simulation:
 - \circ $\,$ because of an interaction of an agent on their own, or
 - because of a change in another environment.
- The first and the last examples are examples of interactions with environments.
- The simplest interaction possible between an agent and an environment is that the agent knows the value of the environment and can act using this value.
- Let us go back to the evacuation simulation.
 - $\circ~$ In this simulation, the agents can retrieve the distance to the exit value from the raster environment.
 - \circ $\,$ Based on this information, the agent will decide to which cell it will move.
 - \circ The agent will always move to the cell with the lowest value, as that is closest to the exit.
 - $\circ~$ The distance values are fixed throughout the simulation, yet there are environments that are dynamic.
 - An example is smoke that develops due to a fire.
 - Some agents are initially not trapped by that smoke, But a few steps later, the smoke area has grown and they are now trapped, and they need to change their behaviour.

- In the previous example, the agent changes its behaviour due to an environment.
 - So the environment affects the agent behaviour.
- The opposite can also happen the agent affects the environment. The agent can also change the value of a raster cell.
 - You've seen this already in the wolf sheep predation model.
 - When the sheep is on a cell with grass, the sheep can eat the grass and it is going to change the value of the environment.
 - The cell will be turned into bare soil.
 - Other interactions leading to changes in the environment are, for example, an agent building a house in a certain location.
 - This house does not have to be a cell, but can also be a polygon.
- There is also interaction between environments.
 - $\circ~$ A simple example is the smoke in the evacuation simulation.
 - Perhaps this smoke is caused by a fire.
 - This fire is represented as another raster environment.
 - Based on the spread of the fire, the smoke will diffuse.
 - Another example for the wolf-sheep model involves the grass.
 - The grass can only grow when there is enough groundwater.
 - The groundwater can be represented as an environment that will influence the grass environment.
- I hope that you have learned from this lesson how environments can influence agent behaviour and the other way around.
- Perhaps the examples you have seen in this lecture can be an inspiration for your own models.