Agent-Based Modelling and Simulation Processes-Summary

Overview

Agent-based modelling (ABM) is a computational approach for simulating the interactions of
agents to assess their effects on the system as a whole. Here an extensive overview of the key
elements of ABM, including verification, sensitivity analysis, parameterization, and validation is
discussed.

Verification

Key Points:

Simulation History Analysis: Essential for understanding the model output by evaluating

the details of a simulation history.

o Methods:
= Key events in chronological order.
= History of an individual agent.
= Globalviewpoint (large-scale patterns).

Ensuring Model Specifications: Verification ensures the model meets the
specifications. Axelrod's methods emphasize the need for repeating simulations and
performing statistical analyses to determine if results are typical or sensitive to initial
conditions and parameters.

Verification Methods:

Face Validation: Repeated simulations and statistical analyses to ensure that the results
are typical and robust. Sensitivity analysis checks the impact of variations in initial
conditions and parameters on the model output.

Sensitivity Analysis

Key Points:

Local Sensitivity Analysis: Examines how sensitive the model is to the value of each
individual parameter.

Global Sensitivity Analysis: Assesses the model's sensitivity when varying all
parameters simultaneously. It addresses the complexity due to numerous possible
parameter combinations.

Considerations:

Robustness and uncertainty in model outputs are examined to determine the reliability of
results under different parameter values.

Stability checks include plotting the accumulative average of the state variable over
increasing runs and calculating the coefficient of variation.



Parameterization
Key Points:
o Parameterization: The selection of values for a model's parameters.

e Calibration: A specific type of parameterization aimed at aligning the model with
empirical data.

o Purposes:
= Matching empirical data.
= Estimating parameters that are difficult to measure directly.
= Testing structural realism by calibrating sub-models separately.
Methods:

e Categorical Calibration: Finding parameter values that produce results within a
predefined acceptable range.

¢ Best-fit Calibration: Identifying a set of parameters that best match specific criteria.
Validation
Key Points:
¢ Validation: Ensuring the model accurately represents the phenomenon being simulated.
o Types:
= |Input Validation: Ensuring the accuracy of input data.
= Process Validation: Verifying the processes within the model.
= Output Validation: Checking if the output aligns with empirical data.

= Macro and Micro Validation: Comparing aggregated and individual agent
behaviors.

Challenges:
e The stochastic nature of models and systems.
o Path dependency, where the initial setup significantly impacts the outcome.

e Potential discrepancies between model predictions and known past states due to data
limitations.

Pattern-Oriented Modelling
Key Points:

o Utilizes spatial and temporal patterns to validate the model's ability to reproduce
observed phenomena.

e Examples include modelling cholera diffusion and COVID-19 scenarios, where patterns
in infection spread and intervention effects are analyzed.



Applications:

o Spatial Patterns: Evaluating if the model can replicate patterns of change over time and
space.

¢ Model Integration: Combining different model aspects, such as governmental risk
perception in COVID-19 models.

Conclusion

Here a comprehensive approach to ABM is discussed, emphasizing the importance of
verification, sensitivity analysis, parameterization, and validation in creating robust and reliable
models.

By addressing each of these elements, modelers can ensure that their simulations accurately
reflect real-world phenomena and provide valuable insights for decision-making and policy
development.
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///' VERIFICATION

» Jo understanc_l t_he output of an agent- « Verification is the task of ensuring that a
based model it is often necessary to model satisfies the specifications
evaluate the details of a simulation
‘history’.

« This can be done in three ways (Axelrod):

« Key events in chronological order Q/[’\-LCLL ”-W BJ\M;OY' OLW‘S ”{?D*je{{b%
1

« History of one agent can be documented — 9( QQ
» History from a global viewpoint can be
noted (distribution of pedestrians) —large — VQ%’“*‘L oy
scale patterns)
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Castle, C. J. E. and A. T. Crooks (2006). Principles and Concepts of Agent-

Ngo, T.A, See, L. (2012). Calibration and Validation of Agent-Based Models of Land Cover Based Modelling for Developing Geospatial Simulations. Working paper
Change. In: Heppenstall, A., Crooks, A., See, L., Batty, M. (eds) Agent-Based Models of series UCL - paper 110 - Sep 06, Horking paper

Geographical Systems. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8927-4_10
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Local or global sensitivity analysis

== \
= ,—\ = Local sensitivity analysis: test how sensitive the model is to the value of each individua

parameter.
= Does not allow us to capture parameter interactions: how the model’'s sensitivity to one
parameter might change as other parameters change

= Global sensitivity analysis: test how sensitive the model is when varying all parameters at
the same time.
= Problem is that many different combinations are possible
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Sensitivity analysis, uncertainty, robustness

» Does the model reproduce patterns robustly, or are these results sensitive to
changes in model parameters?

= How uncertain are the model’s outputs? (would it produce the same results if
different plausible parameter values are used)

= Uncertainty analysis (UA) looks at how uncertainty in parameter values affects the
reliability of model results

» Robustness analysis (RA) explores the robustness of results and conclusions of a
model to changes in its structure.
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Two methods to check stability (robustness):

= Plotting the accumulative average of the state variable (output) over an increasing
number of runs.

= The coefficient of variation is defined as the ratio between the standard deviation of a
sample and the mean of that sample resulting in the following formula: Cv=ou

in which Cv is the coefficient of variation, o the standard deviation of the sample and y the mean of the sample
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Determine how many times a new population should be constructi-

——%— \ = Agent-based models use a re-created “synthetic population”

* The synthetic population is normally generated based on statistical data (CBS).
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Figure 6.2: Synthetic population generator after Moeckel (2003)
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THE MODELLING PROCESS
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Parameters are the constants in the
equations and algorithms that are used in
your model

Parameterization: selection of values for a
model's parameters

Calibration: specific type of parameterization
in which we try to find a set of values for
important parameters.




Purposes of model calibration

=~ — \ » Model calibration serves the following purposes:
= Force the model to match empirical data
» Estimate the value of parameters that cannot be evaluated (measured) directly

= To test the model’s structural realism: can we calibrate it to match the observations
within a reasonable range?

= Calibrate each sub-model separately
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Categorical versus Best-fit Calibration

vomgl
—\ = Categorical Calibration: search for parameter values that produce model results within a
category or range you defined as acceptable (mean number of agents between 120 and

Y/} = Best-fit Calibration you search for one set of parameters that cause the model to best
match some exact criteria (mean 135 agents)

Awc UNIVERSITY OF TWENTE.



THE MODELLING PROCESS
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VALIDATION

A model has a degree of validity
(Law and Kelton, 1991)

A model is valid to the extent that it adequately
represents the system being modelled (Casti,
1997)

Casti, J.L. (1997) Would-Be-Worlds: How Simulation is Changing the Frontiers of Science, John Wiley & Sons, New York, USA.
Law A.M., and W.D. Kelton (1991), Simulation modeling and analysis; Second Edition, McGraw-Hill, New York
Axelrod, R. (1997). Advancing the Art of Simulation in the Social Sciences. Simulating Social Phenomena, Berlin, Heidelberg, Springer Berlin

Heidelberg.
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7 ’ VALIDATION - POSSIBLE PROBLEMS

« Both model and system under analysis
are likely to be stochastic. > (rourdle
. AN —
« A model might be able to produce
plausible future predictions but may not be
able to recreate known past system

states. — fow 'L Ve thende 'PM/E‘ Lee.
thoe wearen 't Hve M

« Model could be correct but data from
the real-world system may not.

« Many simulations are path dependant
(i.e. the outcome of a simulation is
dependant on the exact initial setup
chosen) — history of a simulation is
highly significant.
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Figure 2: Simplified Version of the Modeling Process

Sargent, R. (2011). Verification and validation of
simulation models.

January 2011, Proceedings - Winter Simulation
Conference 37(2):166 - 183

DOI: 10.1109/WSC.2010.5679166
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~ VALIDATION

al

= Validation = Validity of a model is always related to
= Input validation the purpose of this model

» Process validation (’,ovxﬁ\‘*@'[\/"\ﬁ MUM = All models are simplifications, and all

= Descriptive output validation <> pm/ﬁ*ﬂ-/f n models are wrong

» Predictive output validation— aodn brom
fro modtl madch with rerd ~world

= Macro validation (at an aggregation level)

= Micro validation comparing individual
rules/agents

= Face validation (do the general ideas about
the behavior and properties compare to the
real-word) versus empirical validations (data
validation) 977
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An Example: Using time series and spatial patterns

Augustijn, E.-W,, et al. (2016). "Agent-based modelling of
cholera diffusion." Stochastic Environmental Research

(d) Run 2: After 15 days (e) Run

and Risk Assessment 30(8): 2079-2095.
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INTEGRATED MODEL

RESULTS Yo no wao& .y vl

2000 100

I Range of epidemic curve

: : : : : Range of epidemic curves representing the
1800~ e T = o e S o o0 minimum and maximum number of cases
1 ’ ’ ’ : : : within a set of 90 runs.

1600 - ,. ....... \ ........... 19 T k . ............. ............. -80

P IR N L LN — A — - 170

w e 60

: : : i [——cCumulative number of cases (%
L Rt SN | [ SUSSY AN | S 3 )l 50

: : —Dis_.charge (m_ 1s)
800l Ao W T P 40 40
800 ; S : I 30 30
a0l L NIV PR - — 20 20

200k - ..... N\ ............. 10 10
3 : : : : : 0 ||III| |||||
29-sep 29-okt 29-nov

Number of cases

Time (days)

Transmission mechanisi HH HEH EH VT

Average number of cases 80 2461 683 22
Minimum and maximum number of cases  60-104 2237-2608 595-786  10-38
Contribution to total number of cases (%) 2.5 75.8 21.0 0.7

2079-2095.

@ Augustijn, E.-W,, et al. (2016). "Agent-based modelling of cholera diffusion." Stochastic Environmental Research and Risk Assessment 30(8):
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PATTERN ORIENTED MODELING

1967 - 1975 Simulation 1967 - 1975 Combined rules

= Two differen/alternative
hypothesis

= Extension: use the complete
area to find the optimal location

= Infilling: try to align to existing

buildings

settlement growth in Dar es Salaam, Tanzania : an agent - based housing
model. Computers, environment and urban systems, 35(2), 93-

103. https://doi.org/10.1016/j.compenvurbsys.2011.01.001
I wrc UNIVERSITY OF TWENTE.



Covid-19

model

) BasemodelSEIRmodel - NetLogo {C:\Users\augustijn\Documents\EAUN\Corona\Thesis.SietskeTjalma_Final\Bas\BasemodelSEIR changed files}
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Risk perception

Positive tests per 100.000

inhabitants per week <50 =50
Risk level 1 Risk level 2 Risk level 3 Risk level 4 Risk level 5
Caution Concern Serious Severe Lockdown
Hospitalized individual
(incl. IC) - nationwide <40 <40
per day
Coping Strategies
— ~ o
Contact Matrix | = it 2 Normal Q Reduced Reduced @ Further Reduced
Job Commuting | /- e 2 Level 80% 2 Level 60% 2 40% 2 20%
School Commuting level 100% Level 100% Level 100% 100% 0%
GA?; °"mm“:f“g level 100% Level 80% Level 60% 40% 20%
commutin
& level 100% Level 90% Level 70% 50% T 30%

Ministerie van Volksgezondheid, 2020

Q Augustijn et al. (2022) Integration of governmental risk perception into a Covid-19 model for the Netherlands, 2022 VFGG
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With closing of schools

Real Data === Simulation Result

700

600

é
.2
§ 500
s
‘s, 400
w
2
S 300
k2
= 200
7
100
0
P PP PP PP PSPPI P PP O
U IR IR R O O O i R RV VI VS O IR R
\\Q \\Q Q \\Q \Q \\\Q \\Q \\Q \\Q N\ \\\ \\’ R \Q’ \\Q \Q \\Q
AR\ \S A S\ S \\ A\ G \S I\ \ S ) \ A \ R\ S\
Date

Number of hospitalized cases for the RoadMap
Scenario
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Interventions on Commuting Age Scenario Interventions on Commuting Roadmap Scenario
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Figure 7: Interventions on Commuting for the RoadMap Scenario (a) and the Age Scenario (b).
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MODELING COVID-19
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BEHAVIOR SPACE

Open behavior space via
the Tools menu

Create a new experiment
= Edit an existing experiment
* Run an experiment

UNIVERSITY OF TWENTE.
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BEHAVIOR SPACE

)‘ Experiment X

= Variables that are Sy
1 names :vpe iabl ful te brackets and quotation marks):
automatically added come _ Dochouseholds’ 1001 :
. variables >
from the user interface
= For models that are e e e
stochastic, increase the repetitions s
number Of repetltlons [+ Run combinations in sequential order

For eample, having ["var" 1 2 3] with 2 repatitions, the experiments’ "var” vales will be:
sequential order: 1, 1, 2, 2, 3, 3

= Carefully check the outputs outbUts e R
— number of households P
per shelter e ooy s

across multiple lines

v

count turtles A

v

Measure runs at every step

= Make sure your model .

‘ Setup commands: Go commands:
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for ever - } |Stop condition: : » |Final commands: :
Stopping the ) ﬁw_@,mn;mmm e
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@ =
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CREATING LINKS

g to setup-agents
create-residents 100
ask residents [move-to one-of patches set color blue set shape “person”]
create-tourists 3@@
ask tourists [move-to one-of patches set color yellow set shape “"person” set stay-duration (random 1@ + 1] create-link-with one-of residents]
end

) * Exercise2 - NetLogo {C\EAUN\Elective\2022\materials\ABM_exercises}
File Edit Tools Zoom Tabs Help
Interface Info Code

normal speed )
4 [ ] + [ view updates ; - -
Edit Delete Add I ml " u I | Settings...

= You now see lines between the tourists and
the residents when you run the setup

A wc UNIVERSITY OF TWENTE.



CREATE MORE LINKS

T = Create a slider to define the number
AR R of links to create

D>+ Exercise2 - Netlogo (CAEAUN\Elective\2022\materials\ABM _exercises)
File Edt Tools Zoom Tabs Help

Interface nfo Code
normal speed
/B o+ A vew uodates
X oo ay BES <] I ln l Settrgs.
]

Maximum
][0

=
Units (optional) |

= to setup-agents
create-residents 100

ask residents [move-to one-of patches set color blue set shape "person™]
create-tourists 3@e

ask tourists [move-to one-of patches set color yellow set shape “person” set stay-duration (random 1@ + 1
end

create-links-with n-of connections-per-people other tourists]

A wc UNIVERSITY OF TWENTE.



>+ Bxercise2 - Netlogo (C:\EAUN\Elective\2022\materials\ABM_exercises}
File Edit Tools Zoom Tabs Help

e - = Give the links another

Ed’\t De!le A'.:l I i I gm::::::afs I Settings...
color

» Reduce the number of
agents to see the links

£ to setup-agents
create-residents 5
ask residents [move-to one-of patches set color blue set shape “"person”]
create-tourists 10
ask tourists [move-to one-of patches set color yellow set shape "person" set stay-duration (random 18 + 1) create-links-with n-of connections-per-people other tourists]
ask one-of tourists [
set color red
h|
I ask links [[set color black]| I
T

A wc UNIVERSITY OF TWENTE.



MOVING THE TURTLES

> D> * Exercise2 - NetLogo {CAEAUN\Elective\2022\materials\ABM_exercises}
. . ] .
Bxercise2 - Netlogo {CA\EAUN\Elective\2022\materials\ABM_exercises} Fie Edit Tooks Zoom Tabs Help
File Edit Tools Zoom Tabs Help
Interface Info Code
Interface Info Code ] Wh
= en we run the go, an
4 B + [ view updates : 7
Edt ekt Add |DBRSS - I | I | settngs.. |

tids: 0 continuous

our turtles move, the
network will remain as is
(the links will move with the
turtles)

>+ Exercise2 - NetLogo (C\EAUN\Elective\2022\materials\ABM_exercises}
File Edit Tools Zoom Tabs Help
Interface Info Code

) * Exercise2 - NetLogo {C\EAUN\Elective\2022\materials\ABM_exercises} }
File Edit Tools Zoom Tabs Help

Interface Info Code

normal speed 5 normal speed
/ [ ] + M viewupdates 4 [ ] + [ view updates cett
Edt  Delete  Add (s -] I ml-z | continuous + I Lo Edt  Delete  Add I m'q continuous I ==

t
o
S
N

/8]
4
AL/

4"

I TcC UN




D> * Exercise2 - NetLogo {C\EAUN\Elective\2022\materials\ABM_exercises}
File Edit Tools Zoom Tabs Help
Interface Info Code

SPREAD MESSAGE il

)' * Exercise2 - NetLogo {C\EAUN\Elective\2022\materials\ABM_exercises}

File Edit Tools Zoom Tabs Help _

Interface Info Code

Fﬁ Xd: I I [] Indent automatically [ ] Code Tab in separate window

breed [residents resident]
breed [tourists tourist]

= \We see all
turtles turn red

turtles-own [stay-duration activity]
patches-own [landuse]
globals [landuse-list]

=S d the fact
rea e 1aC
S to Setup ) * Exercise2 - NetLogo {C\EAUN\Elective\2022\materials\ABM_exercises} th t h | d
clear-all File Edit Tools Zoom Tabs Help a you S O u
setup-environment Interface Info Code
setup-agents normal speed

L0 pmmal T Tome e be aware of tick
risk

0 to go
if ticks mod 7 != 6 or ticks mod 7 != @ [
ask residents [set activity 1]]

ask tourists [set activity one-of [2 3]]

move2 w1

ask tourists [ ] = 277
if color = red [

ask one-of link-neighbors [
set color red

1
1
1
tick
end

A wc UNIVERSITY OF TWENTE.






." "& Validation is regarded to be the most difficult part of ABMs. Which step in the validation
g %\\ process is the most difficult part of validating the Evacuation model? You can select

. multiple answers. Note:- Evacuation Model is towards to descriptive (pattern)-(ex. does

« _\, spatial (building) matters?
Input validation, as we cannot set a building to fire to collect data that is correct/valid.
Process validation, as we do not know what people in a building are doing at the time
an evacuation starts.

Descriptive validation, as there are no patterns that we can replicate.
Predictive validation, as there is no independent data available

Note: -
a. Input Validation: We can do experiment even if we aren't set fire, we can still collect

data. We can set fire drill to collect how people move. (But fire drill might not be same
as real situation.)
@) b. Process Validation: Main focus isn't what people doing at time start.

d. Predictive validation: Model isn't build for prediction thing.
sx<  UNIVERSITY OF TWENTE.
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I

1”

—\ To check the validity of a model, you should know the purpose of the model. Which of the
« statements below about the Wolf-Sheep-Grass model is correct?

This model does not have a purpose, and therefore, it cannot be validated.

a

)p b. The purpose of this model is to show that wolf-sheep dynamics Is a complex system.
Therefore, descriptive output validation is the most important aspect of the validation
process.

The purpose of this model is to predict how many sheep can survive with a given
number of wolves in a neighborhood. Therefore, predictive output validation is the most
important aspect of the validation process.

L d. The problem with this model is that not all processes, like flocking of sheep, are
Implemented, and therefore, the model cannot be validated.

Awc UNIVERSITY OF TWENTE.
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—\ |n the Living Textbook, you find the concept “validation™ as one of the steps in the ABM
deS|gn steps. Under challenges, various issues are listed that might apply to the evacuation
' model. Select all correct statements below.

The stochastic nature

Predictive versus retrodictive capability
Data Quality

Path Dependency

Note: -

{ b. Predictive versus retrodictive capability: Mostly, we predict the things at the period
A that its happen which is not applicable for evacuation model.

c. Data Quality: Data that we collect during fire drills vs. real-situation

Awc UNIVERSITY OF TWENTE.
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